

JAYOTI VIDYAPEETH WOMEN'S UNIVERSITY, JAIPUR Government of Rajasthan established Through ACT No. 17 of 2008 as per UGC ACT 1956 NAAC Accredited University

# Faculty of Education and methodology

**Department of Science and Technology** 

- Faculty Name- Jv'n Narendra Kumar Chahar (Assistant Professor)
- **Program-** B.Tech 8<sup>th</sup>Semester
- Course Name Cryptography and Network Security

Session no.: 21

Session Name- Multi-Precision Arithmetic

Academic Day starts with -

 Greeting with saying 'Namaste' by joining Hands together following by 2-3 Minutes Happy session, Celebrating birthday of any student of respective class and National Anthem.

Lecture starts with- quotations' answer writing

Review of previous Session - RSA public key cryptosystem

Topic to be discussed today- Today We will discuss about Multi-Precision Arithmetic

Lesson deliverance (ICT, Diagrams & Live Example)-

> Diagrams

Introduction & Brief Discussion about the Topic- Multi-Precision Arithmetic

# **Multi-Precision Arithmetic**

This involves libraries of functions that work on multiword (multiple precision) numbers and multiplication digit by digit. Also, it does exponentiation using square and multiply are a number of well-known multiple precision libraries available - so don't reinvent the wheel.

We can use special tricks when doing modulo arithmetic, especially with the modulo reductions

#### **Faster Modulo Reduction**

Chivers (1984) noted a fast way of performing modulo reductions whilst doing multi-precision arithmetic calcs.

Given an integer A of n characters (a0, ..., an-1) of base b

$$\mathbf{A} = \sum_{i=0}^{n-1} \mathbf{a}_i \mathbf{b}^i$$

then

$$A \equiv \left\{ \sum_{i=0}^{n-2} a_i b^i + a_{n-1} b^{n-1} \pmod{jm} \right\} \pmod{m}$$

ie: this implies that the MSD of a number can be removed and its remainder mod m added to the remaining digits will result in a number that is congruent mod m to the original.

\* Chivers algorithm for reducing a number is thus:

Construct an array R = (bd, 2.bd, ... , (b-1).bd)(mod m) FOR i = n-1 to d do WHILE A[i] != 0 do j = A[i]; A[i] = 0; A = A + bi-d.R[j];

#### END WHILE

#### END FOR

where A[i] is the ith character of number A R[j] is the jth integer residue from the array R n is the number of symbols in A, d is the number of symbols in the modulus

### **Speeding up RSA - Alternate Multiplication Techniques**

- conventional multiplication takes O(n2) bit operations, faster techniques include the Schönhage-Strassen Integer Multiplication Algorithm:
- breaks each integer into blocks, and uses them as coefficients of a polynomial
- evaluates these polynomials at suitable points, & multiplies the resultant values
- interpolates these values to form the coefficients of the product polynomial
- combines the coefficients to form the product of the original integer
- the Discrete Fourier Transform, and the Convolution Theorem are used to speed up the interpolation stage
- can multiply in O(n log n) bit operations

the use of specialized hardware because:

- conventional arithmetic units don't scale up, due to carry propogation delays
- so can use serial-parallel carry-save, or delayed carry-save techniques with O(n) gates to multiply in O(n) bit operations, or can use parallel-parallel techniques with O(n2) gates to multiply in O (log n) bit operations

# **Reference-**

**1. Book:** William Stallings, "Cryptography & Network Security", Pearson Education, 4th Edition 2006.

# **QUESTIONS: -**

# Q1. Explain Multi-Precision Arithmetic.

Next, we will discuss more about RSA and the Chinese Remainder Theorem.

 Academic Day ends with-National song 'Vande Mataram'