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Academic Day starts with –  

• Greeting with saying ‘Namaste’ by joining Hands together following by 2-3 Minutes 

Happy session, Celebrating birthday of any student of respective class and National 

Anthem.  

Lecture starts with- quotations’ answer writing   

Review of previous Session – RSA public key cryptosystem 

Topic to be discussed today- Today We will discuss about Multi-Precision Arithmetic 

Lesson deliverance (ICT, Diagrams & Live Example)-  

➢ Diagrams 

Introduction & Brief Discussion about the Topic– Multi-Precision Arithmetic 

 

https://www.jvwu.ac.in/documents/UGC-letter.pdf
https://www.jvwu.ac.in/documents/NAAC.pdf


Multi-Precision Arithmetic 

This involves libraries of functions that work on multiword (multiple precision) numbers and 

multiplication digit by digit. Also, it does exponentiation using square and multiply are a number 

of well-known multiple precision libraries available - so don't reinvent the wheel. 

We can use special tricks when doing modulo arithmetic, especially with the modulo reductions 

Faster Modulo Reduction 

Chivers (1984) noted a fast way of performing modulo reductions whilst doing multi-precision 

arithmetic calcs. 

Given an integer A of n characters (a0, ... , an-1) of base b 

 

 

then 

 

ie: this implies that the MSD of a number can be removed and its remainder mod m added to the 

remaining digits will result in a number that is congruent mod m to the original. 

* Chivers algorithm for reducing a number is thus: 

Construct an array R = (bd, 2.bd, ... , (b-1).bd)(mod m) 

FOR i = n-1 to d do  

WHILE A[i] != 0 do 

j = A[i]; 

A[i] = 0; 



A = A + bi-d.R[j];  

END WHILE  

END FOR 

where A[i] is the ith character of number A R[j] is the jth integer residue from the array R n is 

the number of symbols in A, d is the number of symbols in the modulus 

Speeding up RSA - Alternate Multiplication Techniques 

- conventional multiplication takes O(n2) bit operations, faster techniques include the 

Schönhage-Strassen Integer Multiplication Algorithm: 

- breaks each integer into blocks, and uses them as coefficients of a polynomial 

- evaluates these polynomials at suitable points, & multiplies the resultant values 

- interpolates these values to form the coefficients of the product polynomial 

- combines the coefficients to form the product of the original integer 

- the Discrete Fourier Transform, and the Convolution Theorem are used to speed up the 

interpolation stage 

- can multiply in O(n log n) bit operations 

the use of specialized hardware because: 

- conventional arithmetic units don't scale up, due to carry propogation delays 

- so can use serial-parallel carry-save, or delayed carry-save techniques with O(n) gates to 

multiply in O(n) bit operations, or can use parallel-parallel techniques with O(n2) gates to 

multiply in O (log n) bit operations 

 

 

 

 

 

 

 



Reference-  

1. Book: William Stallings, “Cryptography & Network Security”, Pearson Education, 4th 

Edition 2006. 

 

QUESTIONS: - 

Q1. Explain Multi-Precision Arithmetic. 

 

Next, we will discuss more about RSA and the Chinese Remainder Theorem. 

 

• Academic Day ends with-  

National song ‘Vande Mataram’ 


